본문 바로가기

코딩테스트 문제풀이

[python3] 유레카 이론

728x90

유레카 이론 성공다국어

한국어   
시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 256 MB 11951 6989 5499 57.708%

문제

삼각수 Tn(n ≥ 1)는 [그림]에서와 같이 기하학적으로 일정한 모양의 규칙을 갖는 점들의 모음으로 표현될 수 있다.

[그림]

자연수 n에 대해 n ≥ 1의 삼각수 Tn는 명백한 공식이 있다.

Tn = 1 + 2 + 3 + ... + n = n(n+1)/2

1796년, 가우스는 모든 자연수가 최대 3개의 삼각수의 합으로 표현될 수 있다고 증명하였다. 예를 들어,

  • 4 = T1 + T2
  • 5 = T1 + T1 + T2
  • 6 = T2 + T2 or 6 = T3
  • 10 = T1 + T2 + T3 or 10 = T4

이 결과는 증명을 기념하기 위해 그의 다이어리에 “Eureka! num = Δ + Δ + Δ” 라고 적은것에서 유레카 이론으로 알려졌다. 꿍은 몇몇 자연수가 정확히 3개의 삼각수의 합으로 표현될 수 있는지 궁금해졌다. 위의 예시에서, 5와 10은 정확히 3개의 삼각수의 합으로 표현될 수 있지만 4와 6은 그렇지 않다.

자연수가 주어졌을 때, 그 정수가 정확히 3개의 삼각수의 합으로 표현될 수 있는지 없는지를 판단해주는 프로그램을 만들어라. 단, 3개의 삼각수가 모두 달라야 할 필요는 없다.

입력

프로그램은 표준입력을 사용한다. 테스트케이스의 개수는 입력의 첫 번째 줄에 주어진다. 각 테스트케이스는 한 줄에 자연수 K (3 ≤ K ≤ 1,000)가 하나씩 포함되어있는 T개의 라인으로 구성되어있다.

출력

프로그램은 표준출력을 사용한다. 각 테스트케이스에대해 정확히 한 라인을 출력한다. 만약 K가 정확히 3개의 삼각수의 합으로 표현될수 있다면 1을, 그렇지 않다면 0을 출력한다.

예제 입력 1 복사

3
10
20
1000

예제 출력 1 복사

1
0
1

나의 첫번째 풀이

 

실패

 

from itertools import permutations

K=int(input())


for i in range(K):
    eureka=[]
    result=[]
    num=0
    n=int(input())

    i=1

    while(1):
    
        num=i*(i+1)//2
        result.append(num)
        
        if n<=num:
            break
        
        i+=1
        
    result=list(permutations(result,3))
    
    for i in result:
        if sum(i)==n:
            eureka.append(1)
            break
    
    if len(eureka)==0:
        print(0)
    else:
        print(1)

 

나의 두번째 풀이

 

성공

 

from itertools import product

K=int(input())


for i in range(K):
    eureka=[]
    result=[]
    num=0
    n=int(input())

    i=1

    while(1):
    
        num=i*(i+1)//2
        result.append(num)
        
        if n<=num:
            break
        
        i+=1
        
    result=list(product(result,repeat=3))
    
    for i in result:
        if sum(i)==n:
            eureka.append(1)
            break
    
    if len(eureka)==0:
        print(0)
    else:
        print(1)

 

첫번째 풀이 틀린이유: 

permutations:순열(순서o, 중복x) 

product(순서o,중복o)

combination(순서 x,중복 x )

 

 

728x90